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Abstract. A density-dependent δ interaction (DDDI) is proposed in the formalism of BCS-type pairing
correlations for exotic nuclei whose Fermi surfaces are close to the threshold of the unbound state. It
provides the possibility to pick up those states whose wave functions are concentrated in the nuclear region
by making the pairing matrix elements state dependent. On this basis, the energy level distributions,
occupations, and ground-state properties are self-consistently studied in the RMF theory with deformation.
Calculations are performed for the Sr isotopic chain. A good description of the total energy per nucleon,
deformations, two-neutron separation energies and isotope shift from the proton drip line to the neutron
drip line is found. Especially, by comparing the single-particle structure from the DDDI pairing interaction
with that from the constant pairing interaction for a very neutron-rich nucleus it is demonstrated that the
DDDI pairing method improves the treatment of the pairing in the continuum.

PACS. 21.30.-x Nuclear forces – 21.10.Dr Binding energies and masses – 21.10.Pc Single-particle levels
and strength functions – 21.10.Gv Mass and neutron distributions

1 Introduction

The newly constructed radioactive beam facilities in the
world have provided an opportunity to access exotic nu-
clei, and furthermore superheavy elements till Z = 116,
and Z = 118 have been synthesized in the lab. All these
new achievements are very exciting, however, the overall
understanding of the properties of nuclei far from the β-
stable valley and at the heaviest end of the periodic table
by current existing theories is still far from complete. The
recent developments showed that the relativistic mean-
field (RMF) theory can describe the bulk properties of
nuclei at the β-stable valley, as well as nuclei far from
the β-stable line [1–6] and superheavy nuclei [7–10]. How-
ever, the properties of exotic nuclei near the drip lines
show rather different features from those of stable nuclei.
New types of isotopic-dependent interactions among nu-
cleons appear and may become dominant. Nuclear densi-
ties, sizes, level fillings, and nuclear excitations of exotic
nuclei may be quite different from those which we have en-
countered so far. The most distinct phenomena for nuclei
near the drip line are the weak binding and the appearance
of the resonant states in the continuum, which are also the
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common phenomena for superheavy nuclei since they are
usually neutron deficient [11]. Their Fermi surfaces are
thus close to the positive level and there are some protons
distributed in positive levels. The direct consequence is
that the constant pairing component of the effective inter-
action can no longer be treated as a residual interaction,
since the constant pairing interaction (CPI) of the BCS
method becomes comparable to the mean field [12,13].

It is our desire to obtain a model valid for all nuclei,
including unstable ones, from the proton drip line to
the neutron drip line. In a realistic description for finite
nuclei, the deformation and pairing correlations must
be included. Pairing correlations are very important for
the ground-state properties of open-shell nuclei, and are
especially crucial for a quantitative understanding of the
size and deformation of heavy nuclei. Different methods
have been developed in refs. [4,14,15] and references
therein to treat the pairing correlation self-consistently.
A simple and commonly used method to deal with the
pairing interaction is the Bardeen-Cooper-Schrieffer
(BCS) theory, which considers the pairing interaction
as a perturbation. The conventional BCS method with
the constant pairing interaction works well except in the
case in which the Fermi surface is close to the unbound
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threshold [13]. Dobaczewski et al. have shown that
the BCS approximation breaks down, if one has finite
occupation probabilities for levels in the continuum,
and pointed out that the roles of finite range and of
density dependence are two important points for the
microscopic study of the pairing interaction [14]. The
finite-range effect can be modeled by an explicit velocity
dependence. Early calculations [16,17] for nuclear matter
predicted a very weak 1S0 pairing at the saturation point
(kf = 1.35 fm−1), so it was concluded that strong pairing
correlations in finite nuclei had to be due to interactions
at the nuclear surface. The surface delta interaction
(SDI) was thus used to deal with the problem [18,19],
however, the density-dependent delta interaction (DDDI)
is a more realistic density-dependent pairing force [20]. In
this work, we include the DDDI into the deformed RMF
theory to calculate the pairing matrix element for the
proton and neutron orbitals of even Sr isotopes.

The self-consistent RMF theory was first extended
by Greiner et al. [21], Price et al. [22], and Gambhir et

al. [23] to treat deformed nuclei. In Gambhir’s work, the
nucleon wave functions and the meson fields are expanded
in terms of the harmonic-oscillator wave functions. We
employ this method for the mean-field part and improve
the BCS part with a density-dependent delta-function
interaction. The use of the nuclear wave function, par-
ticularly the overlap between occupied and unoccupied
states, is resolved reasonably, which allows us to take into
account states in the continuum whose wave functions
are concentrated in the nuclear region.

Sandulescu [24] et al. have presented a simple scheme
for taking into account the resonant continuum coupling
in the relativistic mean field - BCS calculations. In this
scheme, applied before in nonrelativistic calculations, the
effect of the resonant continuum on pairing correlations is
introduced through the scattering wave functions located
in the region of the resonant states. These states are
found by solving the relativistic mean-field equations
with scattering-type boundary conditions for the con-
tinuum spectrum. It would be interesting to distinguish
resonant states from the continuum states, and to study
the properties of the exotic nuclei including resonance
continuum states.

The paper is organized as follows. In sect. 2, we present
the RMF formalism with deformation and pairing. In
sect. 3, we apply the method to Sr isotopes from the pro-
ton drip line to the neutron drip line. We compare our cal-
culated results with those obtained with the finite-range
drop model (FRDM) [25] and the known experimental val-
ues. In sect. 4, we summarize the presented results.

2 RMF with deformation and pairing

We present here the formulation of the RMF theory with
deformation and pairing correlations. The starting point

for the relativistic model is the Lagrange density L [4]:

L = ψ̄(iγµ∂µ −M)ψ +
1
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The nucleon field ψ having mass M interacts with σ-, ω-,
ρ-meson fields: σ, ωµ, ρµ and the photon field Aµ. The
self-coupling terms with coupling constants g2 and g3 for
the σ-meson are introduced [26] to improve the compress-
ibility of nuclear matter. The isospin dependence of the
nuclear interaction is provided by the isovector ρ-meson.
The field tensors of the vector mesons and of the electro-
magnetic field take the following forms:










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Fµν = ∂µAν − ∂νAµ,

(2)

where the symbols have their usual meanings.
The classical variational principle leads to the Dirac

equation

[−iα∇+ V (r) + β (M + S(r))] ψi = εiψi (3)

for the nucleon spinors and the Klein-Gordon equations

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for the meson and the electromagnetic fields. Here, V (r)
is the vector potential
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aγµρaµ(r)+ e
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2
γµAµ(r), (5)

and S(r) the scalar potential

S(r) = gσσ(r). (6)

For the mean-field approximation, the scalar nuclear
density and the various current densities are given with
nucleon spinors and provide the corresponding source
terms in eq. (4):
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Here, the summations are taken over the Fermi sea nucle-
ons only. It should be noted that as usual, the present ap-
proach ignores the contribution of negative-energy states
(i.e. no-sea approximation) which implies that the vac-
uum is not polarized. The π-meson does not contribute
in the present relativistic mean-field (Hartree) approxima-
tion because of its pseudoscalar nature. The coupled equa-
tions (3) and (4) are nonlinear quantum field equations,
and their exact solutions are very complicated. For this
reason, the mean-field approximation is generally used;
i.e., the meson field operators in eq. (3) are replaced by
their expectation values. In this treatment, nucleons are
considered to move independently in the classical meson
fields. The coupled equations are solved self-consistently
by iteration.

The symmetries of the system simplify the calculations
considerably. In all the systems considered in this work,
there exists the time reversal symmetry, so there are no
currents in the nucleus and therefore the spatial vector
components of ωµ, ρaµ and Aµ vanish. This leaves only the
time-like components, ω0, ρa0 and A0. Charge conserva-
tion guarantees that only the 3-component of the isovector
ρ00 survives.

2.1 The axially symmetric case

The RMF theory was extended by W. Greiner et al. [21]
and Gambhir et al. [23] to treat deformed nuclei with ax-
ially symmetric shapes. In the next step, we deduce the
pairing matrix. In order to clear the notations used, we
give a brief review of the RMF method for axially de-
formed nuclei.

Many deformed nuclei can be described with axially
symmetric shapes. In this case, the rotational symmetry
is lost, and therefore the total angular momentum, j, is
no longer a good quantum number. However, the densities
are still invariant with respect to the rotation about the
symmetry axis, which is assumed to be the z-axis in the
following. It is then useful to work with cylindrical coor-
dinates: x = r⊥ cosϕ, y = r⊥ sinϕ and z. For such nuclei,
the Dirac equation can be reduced to a coupled set of par-
tial differential equations in the two variables z and r⊥.
In particular, the spinor ψi with the index i is now char-
acterized by the quantum numbers Ωi, πi and ti, where
Ωi = mli +msi is the eigenvalue of the Z-component of
the angular-momentum operator Jz, πi is the parity and
ti is the isospin. The spinor can be written in the form

ψi(r, t)=

(

fi(r)

igi(r)

)

=
1√
2π










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i(Ωi−1/2)ϕ

f−i (z, r⊥)e
i(Ωi+1/2)ϕ

ig+i (z, r⊥)e
i(Ωi−1/2)ϕ

ig−i (z, r⊥)e
i(Ωi+1/2)ϕ











χti(t).

(8)

The four components f±i (z, r⊥) and g±i (z, r⊥) obey the
coupled Dirac equations. For each solution with posi-
tive Ωi, ψi, we have the time-reversed solution with the
same energy, ψī = Tψi, with the time reversal operator

T = −iσyK (K being the complex conjugation). For nu-
clei with time reversal symmetry, the contributions to the
densities of the two time reversed states, i and ī, are iden-
tical. Therefore, we find the densities

ρs,v = 2
∑

i>0

((

|f+i |2 + |f−i |2
)

∓
(

|g+i |2 + |g−i |2
))

(9)

and, in a similar way, ρc and ρ3. (Here ρ3 is the third
component of the ρ-meson density, which is the only re-
mained component due to charge conservation.) The sum
here runs over only states with positive Ωi. These densi-
ties serve as sources for the fields φ = σ, ω0, ρ00 and A0,
which are determined by the Klein-Gordon equations in
cylindrical coordinates.

To solve the RMF equations, the basis expansion
method is used. We closely follow the detailed presenta-
tions and notations of ref. [27]. For the axially symmetric
case, the spinors f±i and g±i in eq. (8) are expanded in
terms of the eigenfunctions of a deformed axially sym-
metric oscillator potential,

Vosc(z, r⊥) =
1

2
Mω2zz

2 +
1

2
Mω2⊥r

2
⊥. (10)

Then, by imposing the volume conservation, the two oscil-
lator frequencies ω⊥ and ωz can be expressed in terms of

a deformation parameter, β0: ωz = ω0 exp(−
√

5
4πβ0) and

ω⊥ = ω0 exp(+
1
2

√

5
4πβ0).

The basis is now determined by the two constants ω0
and β0. The eigenfunctions of the deformed harmonic-
oscillator potential are characterized by the quantum
numbers, |α〉 = |nz, nr,ml,ms〉, where ml and ms are the
components of the orbital angular momentum and of the
spin along the symmetry axis, respectively. The eigenvalue
of Jz, which is a conserved quantity in these calculations,
is Ω = ml +ms. The parity is given by π = (−)nz+ml .

The eigenfunctions of the deformed harmonic oscillator
can be written explicitly as

Φα(z, r⊥, ϕ, s, t)=φnz (z)φ
ml
nr (r⊥)

1√
2π

eimlϕχms
(s)χtα(t),

(11)
with

φnz (z) =
Nnz√
bz
Hnz (ζ)e

−ζ2/2,

φml
nr (r⊥) =

√
2
Nml
nr

b⊥
ηml/2Lml

nr (η)e
−η/2,

(12)

where ζ = z/bz and η = r2⊥/b
2
⊥. The polynomials Hn(ζ)

and Lmn (η) are the Hermite polynomials and the asso-
ciated Laguerre polynomials, respectively, as defined in
ref. [28]. The quantities Nnz and Nml

nr are normalization
constants.
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The spinors f±i and g±i in eq. (8) are explicitly given
by the following relations:
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The quantum numbers αmax and βmax are chosen in such
a way that the corresponding major quantum numbers
N = nz + 2nρ + ml are not larger than Nf + 1 for the
expansion of the small components and not larger than
Nf for the expansion of the large components, where Nf

is the maximum major shell number we are using here,
and which is 12.

2.2 Pairing with the density-dependent delta-function
interaction

Based on the single-particle spectrum calculated with
the RMF method described above, we carry out a state-
dependent BCS calculation [29,30]. In order to improve
the calculation on the pairing correction, we introduce the
DDDI:

V = −V0
[

1−
(

ρ(r)

ρ0

)γ]

δ(r1 − r2), (14)

where ρ(r) is the isoscalar nucleon density, γ = 1 and ρ0 =
0.16 fm−3 (the saturation density of symmetric nuclear
matter), and actually only its S = 0 part of this pairing in-
teraction form is used here. As in the seniority pairing cal-
culations, we consider only spin-singlet neutron-neutron,
and proton-proton pairing. For either neutrons or protons,
the pairing matrix elements may be written as [19]

V̄iijj= 〈īi|V |jj̄〉−〈īi|V |j̄j〉=−V0
∫

d3r

[

1−
(

ρ(r)

ρ0

)γ]

×
(

ψ†iψ
†

ī
ψjψj̄ − ψ†iψ

†

ī
ψj̄ψj

)

. (15)

It is necessary to prevent the unrealistic pairing of highly
excited states, and to confine the region of influence of
the pairing potential to the vicinity of the Fermi surface.
As discussed in ref. [31], this is accomplished by defining
the pairing contribution Epair to the total energy as

Epair =
∑

fiuivifjujvjViijj , (16)

where ui and vi are the BCS factors, and the cutoff
factors fi are taken as

f2i =

(

1 + exp

(

εi − λ−∆ε
µ

))−1

, (17)

where ∆ε = 5MeV and µ = 0.5MeV [31] are choosen.
A wider pairing window will cause the failure of the con-
vergence of some nuclei. However, the smooth cutoff factor
of eq. (17) actually leads to including more states around
the vicinity of the Fermi surface, the considered states are
not sharply cut off within 5MeV about the Fermi surface.
With this definition of the pairing energy, the state-
dependent energy gaps∆i are the solution of the equations

∆i = −
1

2

∑ fj V̄iijj∆j
√

(εj − λ)2 + f2j∆
2
j

, (18)

where εj is the single-particle energy and λ is the Fermi
energy. The pairing energy and occupation probabilities
may be written as

Epair = −
1

2

∑ f2i ∆
2
i

√

(εi − λ)2 + f2i ∆
2
i

, (19)

v2i =
1

2

[

1− εi − λ
√

(εi − λ)2 + f2i ∆
2
i

]

, (20)

where the particle number condition is given by
2
∑

v2i = N . Equations (3) and (4), the gap equa-
tions (18), and the total particle number condition N for
a given nucleus are solved self-consistently by iteration.

3 The calculation of ground-state properties

We apply the RMF theory with the improved BCS-type
pairing to the ground-state properties of axially deformed
even Sr isotopes including the nuclei far from the sta-
bility line. The calculations have been carried out using
the parameter set NL-SH, which has been used to repro-
duce the experimental neutron radius, and deformation
for exotic nuclei on both sides of the stability line [32].
Nuclear spinors and meson fields are expanded in an
axially symmetric harmonic-oscillator basis with h̄ω0 =
41A−1/3MeV. The major shell is chosen as Nf = 12 and
Nb = 12 for nucleons and mesons, respectively, as de-
scribed in ref. [27]. For the improved pairing interaction,
we take the strength of the delta-function interaction as
850MeV fm3 for neutrons and protons, which can give
reasonable pairing gaps of the Sr isotopes. In order to
show the improvement of the density-dependent pairing
interaction, we also do the calculation for Sr isotopes with
the relativistic mean-field theory with the constant pair-
ing interaction (RMF(CPI)). In the RMF(CPI) calcula-
tion, we used Gn = 15.0MeV/A and Gp = 20.0MeV/A,
where A is the mass number, and the pairing window
εi − λ ≤ 2(41A−1/3)MeV [23]. Here, we used different
pairing strengths, Gp and Gn, for protons and neutrons in
order to obtain the same total energies as those obtained
by the RMF(DDDI) for Sr isotopes.

3.1 The pairing gap

By using the improved BCS-type DDDI pairing in the
RMF theory in deformed nuclei, the pairing gaps both
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Fig. 1. The neutron pairing gap for the Sr isotope chain
against the neutron number N .

Fig. 2. The proton pairing gap for the Sr isotope chain against
the neutron number N .

for neutron and proton are determined in a self-consistent
way along the Sr isotope chain. The gaps are evaluated by
taking the average [33] of the amplitudes vk and uk:

〈uv∆〉 =
∑

k∈Ωq
fkukvk∆k

∑

k∈Ωq
fkukvk

, (21)

where q ∈ {p, n}, and the smooth energy-dependent cutoff
weights are shown in eq. (17).

The neutron and proton pairing gaps are shown in
fig. 1 and fig. 2 as a function of the neutron number of Sr
isotope nuclei, respectively; the results from RMF(CPI),
the finite-range drop model (FRDM) [25] and the experi-
mental data are also shown for comparison. The results of
∆ calculated by RMF(CPI) are more deviated from the
experimental data and from those by FRDM, while the
results by RMF(DDDI) are closer to them, and the vari-
ation tendency is in accordance with them. Especially, at
the magic number N = 50, the RMF(DDDI) result shows
a large pairing gap as the experimental and the FRDM do,
while the result of RMF(CPI) shows an opposite behav-
ior. At N = 82, the same phenomenon appears although

the experimental data is absent. The effect of the improve-
ment of the DDDI is claimed therefore.

For proton pairing gaps, the accordance of the results
of RMF(DDDI) with the experimental data and the re-
sults of FRDM is less pronounced, but is still better than
those by RMF(CPI).

3.2 Total energy per nucleon

Figure 3 shows the total energy per nucleon (E/A) for
Sr isotopes from the improved RMF(DDDI), RMF(CPI)
and RMF, respectively. The known empirical values
taken from the 1993 Atomic Mass Evaluation Tables [34]
are also shown. The figure includes the prediction of
FRDM [25] as well for comparison. Our calculated re-
sults by RMF(DDDI), RMF(CPI) and RMF are in agree-

Fig. 3. The total energy per nucleon for the Sr isotope chain
against the mass number A.

Fig. 4. The differences of the total energy between ex-
perimental data and different theoretical calculations (RMF,
RMF(CPI) and RMF+BCS(DDDI)), respectively, for the Sr
isotope chain.
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ment with those from FRDM and experiment. All show
parabolic shapes with a minimum total energy per nu-
cleon being located at A = 88, where the neutron number
N = 50 is a magic number. The total energies per nucleon
by the RMF(DDDI) theory are in accord with the known
empirical values in almost all the isotopes with deviations
about 0.2 percent, only a few of them are closer to 0.5
percent. In order to show the effect of the RMF(DDDI)
calculations, in fig. 4 the differences of the total energy
per nucleon between the experimental data and three the-
oretical calculations, respectively, are shown. One can find
that the RMF(DDDI) calculations give a better descrip-
tion of the total energy per nucleon than the other two
calculations do, especially on the neutron-rich side.

3.3 Quadrupole deformation and shape coexistence

We have performed calculations in the RMF(DDDI),
RMF(CPI) and RMF theory for both the prolate and
oblate configurations. The deformations of nuclei have
been obtained from the relativistic Hartree minimization
with pairing. In fig. 5 we show the quadrupole deforma-
tion β2 for the shape corresponding to the lowest energy.
The predictions of FRDM [25] and known experimental
values are also shown for comparison. It is seen that the
RMF(DDDI) theory gives a well-defined prolate shape for
lighter isotopes. Further, the addition of a few neutrons
below the closed neutron shell leads to an oblate shape.
This shape turns into a spherical one as the nuclei ap-
proach the magic neutron number N = 50. Nuclei above
this magic number revert again to the prolate shape in
the RMF(DDDI) theory. Then, a shape sequence from
prolate-oblate-spherical-prolate is followed. It can be no-
ticed that the RMF(DDDI), RMF(CPI) and RMF give
nearly the same quadrupole deformations almost for all Sr
isotopes. The three results are generally consistent with
those from FRDM, and do not much deviate from the
known experimental data.

In addition to the lowest minimum with prolate defor-
mation, several isotopes exhibit a second minimum with

Fig. 5. The quadrupole deformation for the Sr chain against
the mass number A.

Fig. 6. Top: shape coexistence for Sr isotopes. Bottom: the
energy difference is Ediff = Eoblate − Eprolate.

oblate deformation, the prolate and the oblate shapes dif-
fer in the total energy only by several hundreds keV, which
may imply a shape coexistence. This is indicated in the up-
per part of fig. 6. The difference of the total ground-state
energy between those of the oblate and prolate configura-
tions is shown in the lower part of fig. 6. It shows that the
Sr isotopes from A = 90 prefer prolate shapes. For nuclei
close to A = 112, the total energy of nuclei with a prolate
shape is only by about 300 keV larger than that of nuclei
with an oblate shape.

3.4 Isotope shift

In fig. 7(a), the isotope shifts r2c (A) − r2c (
88Sr) for

the Sr isotope chain obtained from RMF+BCS(DDDI),
RMF(CPI) as well as from RMF, are plotted as a func-
tion of the mass number A, with the semimagic nucleus
88Sr serving as a reference nucleus. With increasing mass
number A, the isotope shift changes only slightly until
it reaches the magic number N = 50. Beyond the magic
number it increases rapidly with mass number A. Such an
anomalous behavior is a generic feature of deformed nuclei
which usually appears in almost all isotopic chains in the
rare-earth region [7,35–37]. The experimental data for Sr
nuclei, indicated in the figure, exhibit a kink about the
magic neutron number N = 50 [36], and the RMF(DDDI)
theory and also the deformed RMF calculations are suc-
cessful in reproducing this kink. This is because in the
RMF calculations the isospin dependence of the spin-orbit
term is well described, so that the level sequence of nuclei
is reasonably reproduced, and which results in the correct
nucleon distribution in the nucleus, implying that the kink
has a minor dependence on the pairing correction. Nev-
ertheless, the results from RMF(DDDI) and RMF(CPI)
are closer to the experimental data than those from the
deformed RMF without considering the pairing.

In order to obtain more information about this iso-
tope shifts, the rms radii of the charge and neutron distri-
butions of the Sr nuclei obtained with the RMF(DDDI)
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Fig. 7. Isotope shifts for Sr isotopes.

Fig. 8. Neutron single-particle energy levels of 88Sr (left) and
90Sr (right). The occupation probability of the states is pre-
sented by the length of the solid horizontal bars, and the scale
of the obscissa measures the length of the bar. Dotted lines
stand for the Fermi energies.

are presented in fig. 7(b), respectively. By going from the
lighter isotopes to the heavier ones it is seen that the ra-
dius of neutrons increases with the mass number A. The
increasing slope turns bigger at N = 50. The change of the
slope can be explained by fig. 8, where the single-particle
energy levels of 88Sr and 90Sr are plotted, and there the
dotted lines stand for the Fermi levels for the two nuclei,
respectively. The nucleus 88Sr is a nearly spherical nucleus
with several degenerate levels. The last degenerated level
is at the energy −11.8MeV, and there are 10 neutrons
at this level. The levels in the nucleus 90Sr are well sep-
arated, and the last two neutrons are distributed at the

level 1/2+[440] with an energy being equal to −7.3MeV,
which apparently will increase the radius of the nucleus
90Sr in contrast to the radius of the nucleus 88Sr. In addi-
tion, the neutrons distributed in 9/2+[404] and 7/2+[413]
in 90Sr with a higher energy than that of the degener-
ated level in 88Sr will also increase the nuclear radius.
The radius of protons basically does not change before
N = 50, and after this point increases with A in spite of
the fixed proton number in the chain. The close connec-
tion between the neutron and proton spatial distributions
results from the self-consistent treatment of the strong pn
attraction in the particle-hole channel. This can be further
verified by fig. 7(c), where the quadrupole deformations for
the neutrons and protons, as well as the nuclear matter,
are shown. One may find that the deformation of protons
follows the deformation of neutrons, although the proton
number is constant, implying that the distribution of the
protons is affected by the distribution of the neutrons in
the nucleus.

3.5 Two-neutron separation energy

The two-neutron separation energy, S2n, defined as

S2n(Z,N) = B(Z,N)−B(Z,N − 2), (22)

is quite a sensitive quantity to test a microscopic theory,
where B(Z,N) is the binding energy of nuclei with pro-
ton number Z and neutron number N . The two-neutron
separation energy becomes negative when the nucleus
is unstable against the two-neutron emission. In fig. 9,
the two-neutron separation energies for Sr isotopes by
RMF(DDDI) are plotted. The results of the RMF(CPI)
and RMF calculations, the results of the FRDM [25] and
the available experimental data [34] are also shown. Basi-
cally good agreement between experiment and the present
calculation is found. The neutron shell closures at N = 50
and N = 82 can be clearly seen, so that the strong varia-
tion in the experimental separation energy at the neutron
magic number N = 50 is well accounted for by the present

Fig. 9. Two-neutron separation energy for Sr isotopes.
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Table 1. Partial contributions to the binding energy (in MeV). Epart is the energy of the particles (the sum of the single-
particle energies, which already contains the interaction with the fields). Eσ is the contribution of the σ field (linear part), EσNL

the contribution of the σ field (nonlinear part), Eω the contribution of the ω field, Eρ the contribution of the ρ field, Ec the
contribution of the Coulomb field, and Epair the pairing energy. ECM is the center-of-mass correlation. E is the total energy
and E/A the total energy per nucleon.

RMF RMF+BCS
88Sr 100Sr 114Sr 122Sr 88Sr 100Sr 114Sr 122Sr

Epart −2252.076 −2514.215 −2718.388 −2846.271 −2252.076 −2520.353 −2704.745 −2843.651

Eσ 12594.448 13962.038 15119.615 15918.960 12594.749 14007.869 15043.071 15906.648

EσNL −238.462 −265.566 −292.721 −310.671 −238.467 −266.852 −292.189 −310.528

Eω −10611.118 −11727.403 −12645.525 −13271.956 −10611.418 −11764.178 −12578.317 −13261.037

Eρ −17.845 −55.287 −113.226 −156.523 −17.846 −56.143 −114.189 −156.273

Ec −235.884 −227.024 −221.582 −219.574 −235.886 −226.896 −222.518 −219.512

Epair 0.000 0.000 0.000 0.000 −0.0002 −1.571 −3.958 −2.242

ECM −6.913 −6.625 −6.342 −6.200 −6.913 −6.625 −6.342 −6.200

E −767.852 −834.085 −878.169 −892.235 −767.857 −834.750 −879.185 −892.793

E/A −8.726 −8.341 −7.703 −7.313 −8.726 −8.347 −7.712 −7.318

calculation. Furthermore, the two-neutron separation en-
ergy for the nucleus A = 120 is positive, while that for the
nucleus A = 122 negative. Therefore the nucleus 120Sr is
predicted to be the last stable nucleus against two-neutron
emission, i.e., the neutron drip line nucleus. We will study
their structure in sect. 3.7.

3.6 The partial contributions to the binding energy

In order to study the roles of the various mesons, photon,
as well as pairing effect in the RMF approach, we list in
table 1 the partial contributions to the binding energies of
88Sr, 100Sr, 114Sr, and 122Sr using RMF and RMF+BCS
(DDDI), respectively. The Epart, which is the sum of the
single-particle energies, already takes into account signif-
icant contributions from these field. From table 1, a re-
markably balanced cancellation is observed between the
σ and ω contributions (Eσ and Eω). That is to say, the
small nuclear binding energy arises from a cancellation
between the large Lorentz scalar and vector potentials,
each of which is comparable to the nuclear mass. It is nec-
essary to study the ordinary nuclear systems in the rel-
ativistic framework to maintain the Lorentz transforma-
tion properties of the interaction. This leads naturally to
various momentum-, density-, and spin-dependent effects.
One may see that the nonlinear σ field is indeed important
and EσNL increases with the mass number A. This is con-
sistent with the observation of Boguta and Bodmer [26],
where the authors advocate the inclusion of these nonlin-
ear terms for a better description, especially of the surface.
The isospin dependence of the nuclear interaction is pro-
vided by the isovector ρ-meson, an increasing trend of Eρ

with mass number A can be observed. The pairing contri-
butions to the binding energy are small, but they are nev-
ertheless important for nonclosed-shell nuclei, resulting in
the required partial occupancies of the single-particle lev-

Fig. 10. The nucleon occupation numbers Noccu in the
positive-energy states for Sr nuclei.

els. Comparing the single-particle energies Epart of the nu-
clei 88Sr and 100Sr obtained from the RMF+BCS(DDDI)
calculation and those from RMF, one may find that the
absolute value of Epart(RMF+BCS(DDDI)) is larger than
that of Epart(RMF). It may be concluded that the nucle-
ons in the nuclei 88Sr and 100Sr are more tightly bound by
the pairing effect. However, in the nuclei 114Sr and 122Sr
the results are opposite. The reason is that the nucleons of
these nuclei are distributed with larger occupation prob-
abilities at levels above the Fermi surface.

3.7 The effect of the DDDI pairing treatment

One interesting feature of exotic nuclei is the coupling to
the continuum due to the pairing correlations. In this con-
text, we studied the continuum levels and the particle oc-
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Table 2. The comparison of the total energy, deformation, pairing energy between the calculated results by using 12 major
harmonic-oscillator shells and 20 major harmonic-oscillator shells.

Total energy β2 Pairing energy

Major shells 12 20 12 20 12 20
122Sr −892.79 −896.03 −0.05 0.00 −2.24 −11.17
120Sr −893.65 −893.09 0.00 0.00 0.00 0.00
118Sr −888.57 −888.13 0.05 0.05 −0.88 −0.82
116Sr −883.96 −883.58 0.14 0.14 −1.537 −1.41
114Sr −878.51 −878.19 0.16 0.16 −2.49 −2.37

Fig. 11. Single-particle energy levels of 118Sr. The dotted hor-
izontal line represents the Fermi energy. In both panels, the
occupation probabilities above the Fermi energy are multiplied
by a factor of 30 for clarity.

cupation probabilities on the levels by using the constant
pairing interaction (CPI) and the DDDI, respectively. The
nucleon occupation numbers Noccu in the positive-energy
states for Sr are plotted in fig. 10. It is seen that the
nucleon occupation numbers Noccu in the positive-energy

states by the CPI are generally larger than those by the
DDDI, especially for nuclei A > 120. For the nucleus
120Sr, the neutron number is 82, the magic number. It
has been discussed before that 120Sr is the last stable
nucleus against two-neutron emission. When A > 120 in
both cases, the Noccu increase steeply, which may indicate
the failure of the BCS theory. This can be further depicted
in fig. 11. In fig. 11, the neutron single-particle levels of
the nucleus 118Sr are plotted, with the length of the line
proportional to the occupation probability of the neutron,
which is from 0 to 2. The occupation probability shown
in the positive region is amplified by 30 times for clarity.
The level diagrams are calculated by DDDI (left) and CPI
(right), respectively. The single-particle levels are labeled
by the Nilsson quantum number. The pairing strengths,
Gp and Gn, for protons and neutrons in the CPI are read-
justed in order to obtain the same total energies as those
obtained by the RMF(DDDI) for Sr isotopes. The single-
particle levels from RMF with the CPI and with the DDDI
below the Fermi surface are very similar and all magic neu-
tron numbers at N = 82 and below are reproduced in the
two cases, which implies that the pairing effect is mostly
the surface effect. In fig. 11, although there are neutrons
distributed at the positive-energy levels in both cases, the
neutron occupation number in the DDDI calculation is
much smaller than that in the CPI. In addition, the contin-
uum states with bigger neutron occupation probabilities
in the DDDI calculations are closer to the Fermi energy
level, and so more localized in the nuclear region. Only
a few levels with very small neutron occupation numbers
appear at the higher-energy region. In contrast, the cal-
culation with the CPI shows more continuum states with
certain amount of neutron occupation probabilities in the
higher-energy region, and these states seem to be unphys-
ical. This sheds light on the evidence that the DDDI may
have improved the BCS calculation for exotic nuclei.

In order to show the validity of BCS calculations in
this work the convergence with respect to the number of
oscillator shells has been checked. Besides the major shell
Nf = Nb = 12, the Nf = Nb = 20 was also used in the cal-
culations, and the results are shown in table 2. It is clearly
shown that the results with both 12 and 20 shells in nu-
clei with A ≤ 120 are very close to each other. It indicates
that the convergence is fully satisfied, where the occupa-
tion number in the continuum is zero or very small (see
fig. 10). Indeed, beyond the nucleus with A = 120, the cal-
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culations give different binding energies, deformations and
pairing energies. Therefore our results beyond A = 120 are
no longer valid.

4 Summary and conclusion

We have formulated the RMF theory with the axially sym-
metric deformation and the DDDI for the pairing corre-
lation. Conventional calculations for deformed nuclei are
carried out by using the expansion method in terms of the
axially symmetric harmonic-oscillator wave function and
using a constant pairing interaction in the BCS method.
This method is, however, not applicable to the case of nu-
clei close to the neutron or proton drip lines, since the
positive states in the continuum for such nuclei are im-
portant, and cannot be reasonably treated by the conven-
tional BCS theory. In order to improve the BCS method
in the RMF theory, we introduced a DDDI for the pairing
correlation, where the interaction between different paired
nucleons is state dependent, and the positive states, whose
wave functions are concentrated in the nuclear region, also
contribute to the pairing matrix elements. This results in
more reasonable single-particle energy level distributions
and nucleon occupations. The theory by DDDI is gener-
ated to be available to describe the properties of nuclei
closer to the drip line, so that the DDDI improved the
BCS with CPI for describing nuclei in the drip line region.

Under the RMF calculation with the improved BCS
using DDDI, the calculated binding energies, quadrupole
deformations, two-neutron separation energies, and radii
for nuclei in the whole Sr isotope chain from the proton
drip line to the neutron drip line are all in agreement with
the predictions of FRDM, and with available experimen-
tal data. Since the present calculation gives better level
distributions and nucleon occupations, the isotope shift of
the Sr isotope chain agrees better with experimental data
than in the case of the RMF calculation without pair-
ing and the case of RMF(CPI). The partial contributions
from various mesons, photon, Coulomb interaction, and
pairing energy are studied, which give some information
about the change of nuclear structure with increasing neu-
tron number.

In conclusion, the BCS theory is a simple and com-
monly used method to deal with the pairing interaction.
The use of the DDDI to the BCS method has provided
us a possibility to take into account the effects of the
positive continuum states and on this basis to study the
energy level distributions, occupations and the ground-
state properties in the RMF theory with deformation in
a self-consistent way. This theory and the resulting cal-
culations describe the properties of nuclei in the drip line
region well. It would be interesting to compare our re-
sults with those of the Hartree-Bogoliubov calculations
for these nuclei.
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